недеља, 14. април 2013.

Леонард Ојлер

Леонард Паул Ојлер (нем. Leonhard Paul Euler; Базел, 15. април 1707 — Санкт Петербург, 18. септембар 1783) је био швајцарски математичар и физичар. Живео је и радио у Берлину и Санкт Петербургу.
Ојлер је дошао до великих открића у потпуно различитим областима као што су математичка анализа и теорија графова. Увео је у употребу велики број термина који се користе у савременој математици и унапредио математичку нотацију, посебно у оквиру анализе. Ојлер је заслужан за савремени запис математичке функције. Значајан допринос дао је и на пољима механике, оптике и астрономије. 
Сматра се да је Ојлер један од врло значајних математичара 18. века и међу највећим математичарима свих времена. Такође је и један од најплоднијих - сачувано је око 900 његових радова. 
У 18. веку математичка истраживања су била усредсређена на област анализе, а чланови породице Бернули, који су били блиски пријатељи породице Ојлер, су били заслужни за већи део раних открића на овом пољу. Захваљујући њиховом утицају, Ојлер се фокусирао на изучавање математичке анализе. Иако неки његови докази по савременим стандардима математичке строгости нису прихватљиви,  његове идеје су утрле пут многим значајним достигнућима.
Ојлер је познат по великом доприносу развоју степених редова, приказивању функција у облику збира бесконачно много сабирака, као што је
e^x = \sum_{n=0}^\infty {x^n \over n!} = \lim_{n \to \infty}\left(\frac{1}{0!} + \frac{x}{1!} + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!}\right) 
и њиховој честој употреби.
Значајно Ојлерово откриће је развој броја e и инверзне тангенсне функције у степени ред. Његова слободна употреба (која је по савременим стандардима и технички некоректна) степених редова омогућила му је да реши чувени Базелски проблем 1735. године
\lim_{n \to \infty}\left(\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots + \frac{1}{n^2}\right) = \frac{\pi ^2}{6}.
Геометријска интерпретацијаОјлерове формуле
Ојлер је увео употребу експоненцијалне функције и логаритама у аналитичке доказе. Открио је начин да изрази различите логаритамске функције помоћу степених редова, и успешно је дефинисао логаритме негативних и комплексних бројева, чиме је проширио домен математичке примене логаритама. Такође је дефинисао експоненцијалну функцију за комплексне бројеве и открио њену везу са тригонометријским функцијама. За произвољан реалан број φ, према Ојлеровој формули, важи једнакост
e^{i\varphi} = \cos \varphi + i\sin \varphi.\,
Посебан случај те формуле, који се добија за вредност \varphi = \pi,\,\! познат као Ојлеров идентитет,
e^{i \pi} +1 = 0 \,
се у књизи Ричарда Фејнмана сматра за „најзначајнију математичку формулу“, зато што у једном изразу, уз коришћење операција сабирања, множења и степеновања наводи пет важних математичких константи 0, 1, ei и π  Читаоци часописа Математикал интелиџенсер (Mathematical Intelligencer) су1988. године овај идентитет прогласили за најлепшу математичку формулу свих времена. Занимљиво је да су се међу пет првопласираних формула на том гласању нашле чак три које је открио Ојлер.
Између осталог, Ојлер је разрадио теорију виших трансцеденталних функција уводећи гама-функцију и нову методу за решавање једначина четвртог степена. Откривши начин да израчуна интеграл са комплексним границама наговестио је развој модерне комплексне анализе. Зачео је функционалну анализу, и дао чувену Ојлер-Лагранжову формулу.
Ојлер је био први математичар који је користио аналитичке методе за решавање проблема теорије бројева. На тај начин је ујединио две различите математичке гране и увео нову област истраживања, аналитичку теорију бројева. У процесу заснивања новог поља, Ојлер је створио теорију хипергеометријских редова, хиперболичних тригонометријских функција и аналитичку теорију верижних разломака. Доказао је да простих бројева има бесконачно много користећи дивергентност хармонијског реда, и употребљавао је аналитичке методе да би дошао до одређених сазнања о начину на који су прости бројеви распоређени у скупу природних бројева. Ојлерови доприноси на овом пољу су омогућили да се открије Теорема о простим бројевима.
И на пољу физике Ојлер је оставио траг, кроз откриће Ојлер-Бернулијеве једначине. Поред тога што је успешно примењивао своје аналитичке методе на проблеме класичне механике, истим техникама се служио и при решавању астрономских проблема. За своја достигнућа на том пољу добио је неколико награда париске Академије наука. Између осталог, са великом тачношћу је одређивао орбите комета и других небеских тела, разумевајући њихову природу, и рачунајући паралаксу сунца. Његова израчунавања су допринела развоју тачних таблица географских дужина. 
Између осталог, Ојлер је дао значајан допринос и на пољу оптике. Није се слагао са Њутновом теоријом светлости изложеном у делу Оптика (Opticks), која је у то време била преовлађујућа. Својим радом на ту тему из 1740. године помогао је да Таласна теорија светлости коју је предложио Кристијан Хајгенс постане доминанатан начин размишљања, до развоја Квантне теорије светлости.

Kratak clanak o Leonardu Ojleru u znak secanja .
Danas je 306 godina od njegovog rodjenja,pa da se ne zaboravi.


Нема коментара:

Постави коментар